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Abstract Modelling of multiphase flow has attracted much attention in recent years, because of its extensive industrial
and environmental applications. One of the challenges in modelling multiphase fluid systems is to accurately capture the
discontinuously interfacial phenomena. For example, the process of mixing can generate large changes in interfacial
areas through the action of vorticity via stretching, tearing and folding. The volume tracking techniques remain quite
effective for capturing fluid interfaces if some improvements to the original VOF method are considered. The improved
volume tracking method allows interfaces to be captured and maintained compactly in one cell without imposing
restrictions on the topelogical complexity or the number of interfaces that can be represented. In this paper, a modified
VOF, which combines with a semi-implicit algorithm (SIMPLE) coupled with a higher-order advection scheme, is
presented. The surface tension force is modelled by a continuum surface force approximation. An efficient solver is used
for the resulting system of the Hnear equations. An example problem simulated in this paper is the buoyancy-driven
motion of multi-bubbles in a viscous liquid. The complex topological change which occurred during bubbles rising is

well predicted. The results are verified by the experimental data in the literature.

1. INTRODUCTION

Flows with spatial variation of fluid properties, such as
gas-liquid interface due to density variation, can be
found in many engineering applications. The generation
of vorticity by the interaction of non-parallel pressure
and discontinuous fluid properties proeduces a complex
flow structure and scale, which presents a computational
challenge. A robust algorithm for solving multi-phase
flows with an accurate representation of interfaces is
required to accommodate the complex topological
changes of this type of {low.

Conventional algorithms for the solution of flows with
an interface are associated with an explicit scheme for
momenitum advection on a staggered grid (e.g. Lafaurie
et al, {1994}, and Unverdi and Tryggvason [1992]). The
use of an explicit scheme reduces the computational
efficiency due to limitations in the maximum time step.
At the same time, staggered grids present some
difficulties for three-dimensional flows with complex
geometries. Recently, a second-order time-accurate
algorithm based on the Godunov technique has been
developed to sirulate such a flow by Rider et al. [1993].
In their projection algorithms, the convection terms are
explicitly discretised with & second-order upwind
scheme in a flux-limited fashion.

The boundary integral {Ryskin and Leal 1984] and
Lagrangian finite element [Unverdi and Tryggvason
1992] methods are able to simulate flows with
interfaces, but it i3 difficult for them to handie the
fragmentaiion and coalescence of complex interfacial
phenomena. The Marker and Cell (MAC) and volume
tracking techniques {VOF) due to Hirt and Nichols

11982] rematin guite effective. In the conventional MAC
methods, the interface is represented by Lagrangian
marker particles advected by the local velocity. As a
result, it can not accurately define an interface,
especially for three-dimensional flow, and properly
conserve mass. One favoured feature of this method is
that no numerical diffusion exists as any other
conventional interface tracking algorithms have.
Therefore, some variations of this method can still be
promising [Rider et al. 1995].

In this paper, a method is presented to simulate multi-
phase flows with complex interfacial phenomena on
collocated grids. The method is conservative for both
mass and momentum. A semi-implicit scheme is used.
The velocity-pressure coupling is based on SIMPLE.

2, PROBLEM FORMULATION

Consider two spherical gas bubbles, referred to as
leading and following bubbles, rising through a viscous
liquid (see Figure 1).

The two bubbles are initially stationary and the
coalescence of the two bubbles may occur while they are
rising due to buoyancy force. In this study, both gas and
Hquid are considered to be incompressible and
Newtonian. The motion of the bubbles is governed by
the Navier-Stokes equation, which can be written in a
non-dimensional form as
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Figure 1: Schematic description of problem

Note that * is omitted in equations (1) and (2) for
convenience. ® denoles the inner product of tensors,
Ulu,ugu.) is the fluid velocity in x(r,82), p the density,
u the dynamic viscosity, p the pressure, g(0,0,g) the
gravity vector, Ry initial bubble radius, and F,, the
volume form of the surface tension force. Reynolds and
Bond numbers are defined as
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respectively, and
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plx)y = F(x.0p, +{1-F(x,t)lp,
px, )= Fx,0p, +[1- F(x, )1k,

where F is the local volume fraction of liquid. Its value
is upity in the liquid phase and zero in the gas phase.
The last term of equation (2} is the surface tension force
which exists only at the interface, The surface tension
force is modelled by the continuum surface tension force
{CSF) method developed by Brackbill et al. [1992]. iIn
this model, an interface is interpolated as a transient
region with a finite thickness. Thus the surface tension
force localised in this region can be converted iato a
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volume force with the help of a Dirac delta function
concentrated on the surface. The surface tension force is
written as

vz
B, = ox(x) ) )
[c]
in which
K=~(V-1) {8)
From the definition of a unit normal to a surface
. Y
R=— 9
|Vt @)

¢ in the above equations is a colour function {7} is the
difference of the colour function between two phase.
Equation (8) can be expanded in terms of the unit
normal to a surface, n, as

x =F‘;|-Hr:—| v};q (v n)}

This formulation seems to produce a better calculation
of surface tension because it uses a wider stencil than
equation (8).

{(10)

It is noted that equations (5) and (6) represent
discontinuous properties of fluid, which imply an
interface between multiphase fluids, and they can be
used to monitor the dynamics of the interface. However,
when a large discontinuity is involved, for example a
discontinuity of 850 in density ratio exists for a water-air
system, numerical difficulties may arise in identifying an
‘exact’ interface. Thus, instead of solving equation (1)
directly, the volume fraction of liquid, F, is used to
identify an interface. The transport of this function is
given by

aF
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Also, the colour function in equations (7) and (9} can be
replaced by the function F. We now require suitable
initial and boundary conditions. In the case studied in
this paper, an initially spherical gas bubble is located on
the axis of a vertical cylinder filled with a stationary
liguid. The boundary conditions are U =0 at walls. The
bubble is initially at rest,

3. NUMERICAL METHOD

A control volume technique is used to discretise the
PDEs. The computational domain is divided into a
number of non-overlapping control volumes and all
variables are defined at the centre of the control volume.
Such a collocated arrangement of the grid may reduce
the accuracy of the diffusive term, but it has advantages,
such as an accurate representation of flux and source



terms. The collocated grid is illustrated in Figure 2. The
differential equations are integrated over each control
volume. For any variable, ¢, The time integral over a
cell P is given by
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Figure 2: Schematic arrangement of a grid system in the
x-direction

For the orthogonal grid used in this study, convection
and diffusion terms are written afier integration as

J-[V-(G(P)-V-(TV(ﬁ)]d’v’-: (J2+J5), =" +T%,
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For example, the diffusion contribution at the east face
of the control volume P, J”, is linearised by central
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differencing as
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The linearisation of the diffusion terms on other faces

are similar, It should be noted that the accuracy of a

solution may be reduced if Ax, = Ax, in equation (14).
The convection contribution is given by a generalised

form with the well-known deferred correction
expression as,
JIif=GP, + G, +(GD)* (15

in which, the first-order upwind mass flux is defined by

+

(16)
and
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For a uniform grid, the geomeic parameters are equal
to ¢, =035 a, =05 B, =land §, =2 respectively.
By varying the deferred correction term, a higher order
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scheme for the convection term can be obtained (see Li
[1997] for details). For a uniform grid, in the second-
order central differencing (CD), g, =0 g, is equal to
1/8 or 1/6 for a second- or third-order accurate QUICK

scheme respectively, and equal to max{O,(}j—l/IP.ec

for the second-order HYBRID scheme (SHYBRID).
The flux G, is calculated by Rhie-Chow’s interpolation
technique. This technique effectively overcomes the
difficulty of the decoupling between pressure and
velocity raised from a linear interpolation and
guarantees a global mass conservation.

As the grid point is always located at the center of a
control volume, a representative source is obtained by
Jsav = 5,0%, (19)
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The surface teasion force is linearised by a 27-point
stencil for a three-dimensional surface. The detail of an
implementation can be found in Chen et al. [1996].

To capture the sophisticated dynamics of an interface,
an accurate technique is needed to solve equation (11).
In this study, a modified line constant VOF method is
used (see Chen et al. [1997]). In this method, the
interface tracking is divided into three steps: (1)
reconstruct the surface based on the calculated unit
normal to the surface, which is required in the surface
tension calculation; (2) advect the surface with local
velocity using the first-order upwind or downwind
schemes; (3) bockkeeping to guarantee the value of each
local volume fraction F does not to exceed the range of
0 to 1. The upwind scheme is numericaily diffusive; and
a downwind scheme has the advantage of maintaining
the sharpness of a surface, but it s numericaily unstable.
In the original VOF method, a surface can only be
considered as either parallel or horirontal to the flux
direction, thus the numerical diffusion is unavoidable in
some flow situations, such as when a surface has an 45°
angle to the velocity field. In our modified VOF, the
upwind and downwind schemes are combined based on
the surface orientation to achieve an accurate advection
of a surface. When a sorface is considered as parallel to
the flux direction, the upwind scheme iz used, otherwise
the downwind scheme is used. The definition of parallel
or perpendicular to the flux direction is determined by
the resective component of the unit normal to a surface,
fi(n_,n,,n_ ), in equation (9). It can be adjusted based on

the velocity field. Due to the constant line structure of a
surface adopted, special care is required to restrict an
over- or under-flux when the downwind scheme is used.
The implementation details can be found in Lafaurie et
al. 1994]. It is believed that a slope-ling VOF method,
£.g. Youngs® method [1982], overcomes such a over- or
under-flux problem and is able to produce a better
result. Youngs' method has not been implemented here.

To demonstrate our front tracking method, a test
problem of a spherical bubble axisymmetrically rising in



a liquid with a constant velocity field
U(u,,u ) =(0,05), has been performed. It can be seen

from Figure 3b that when a pure upwind scheme is used,
le. n ora, =1 for r or z components of equation (11)
respectively, a serious smear of the sphere is observed
after 500 iterations due to the numerical diffusion.
Switching to the downwind scheme whenever the angle
between a surface and flux direction is greater than
21.8° (n, or n_ 2 04), the numerical diffusion is greatly
reduced and only a slightly smeared surface at the first
quarter of the sphere is observed (see Figure 3c).
Howaver, a pure downwind scheme, »n orn =0,

results in flotsam, as may be seen in Figure 3d.
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Figare 3: Translation of a sphere with different
combination of the upwind and downwind schemes
{Az = Ar = 0.04, Ar=0.01, at 500th iteration)

A semi-implicit scheme is used to solve equation (2) for
the velocity field and the SIMPLE method is adopted for
the wvelocity-pressure coupling. The resultant non-
symmetrical system arising from the momentum
equation is solved by the SIP or Bi-Conjugate Gradient
method with the Incomplete Cholesky precenditioning.
The symunetric system due to pressure correction is
solved by the Conjugate Gradient method with the
Incomplete Cholesky preconditioning.

4. RESULTS AND DISCUSSION

A grid-independent test was carried out on the
axisymmetric rise of a single bubble in a liquid. The
bottom position of the bubble as a function of time is
illustrated in Figure 4 with three different meshes (N, by
Ny 54 by 17, 108 by 34 and 216 by 68, which
corresponds to 145, 578 and 2312 grid points in the
rectangle containing the hemisphere region. It can be
seen that meshes 108 by 34 seem to produce a near grid-
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independent solution. This grid size will be used in all

other runs.
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Figure 4: Effect of grid size on the position of z bubble
risine in an cylinder
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Figure 5: Vertical velocity profile along z-axis with
different convection schemes

In order to validate the predicted results with available
experimental data, the axisymmetric rise of two gas
bubbles of the same size in a very viscous liquid with a
high density ratio is simulated. The parameters used in
the simulation are chosen to be close to the experimental
conditions and are Re=10,Bo=50, p,/p, =850 and

/¢, =100, The non-dimensional initial distance

between two bubbles is 0.36,

Generally, when a single bubble rises due to the
buoyancy force, the pressure gradieat at the lower
surface of the bubble is higher than the one at the top
surface of the bubble, and the vortex sheet which
develops at the surface has a sense of rotation which
induces a tongue of liquid jet that pushes into the bubble
from below. Deformations of the bubble occur. This
phenomenon was reported by many experimentalists,
e.g. Walters and Davidson [1963]. For muiti-bubble
rising, similar behaviour is expected but the deformation
and fragmentation of surfaces are more complex,
Therefore the use of a higher-order convection scheme



is necessary to catch the liquid jet accurately. The effect
of the convection scheme was studied. As may be
expected, for bubble rise with a low Reynolds number,
Re =10, the SHYBRID scheme produces the same
results as the HYBRID because most of the grid Peclet
numbers are less than 2 and, effectively, the central
differencing i1s used in both schemes. However, with a
higher Reynolds number Re =100, the differences
between different schemes are clear, as may be seen in
Figure 5. The HYBRID scheme under-predicts the jet
and a smeared solution of the velocity field is obtained.
The SHYBRID over-predicts the jet. The third-order
QUICK scheme seems to well predict the resolution of
the liquid jet in terms of both its maximum value and
location. Therefore QUICK is used in the following
studies,

{ayt=1.0 (b) t=1.5

{cyt=2.0 (d) ©=2.5
Figure 6: Predicted the axisymmetric coalescence of
two gas bubbles in a very viscous liguid
(Re=10, Bo=30, g:/p, =850, /11, =100, /R=0.36)

For two-bubble coalescence in highly viscous glycerin
Hguid, a preliminary comparison between the predicted
results and the experimental observations (Figure 2 in
WNarayanan et al. [1974]) was performed. The similarity
of the shape development of two bubbles in the highly
viscous liquid can be clearly seep from Figures 6 and 7.
Because of a lack of details of the experiment, no
guantitative comparison is possible.
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It can be seen from Figure 6 that the motion of the
leading bubble induces a deformation in the following
bubble, giving it a pear-like shape (Figures 6a,b). Once
two bubbles are approaching (Figure 6b), an
acceleration of the following bubble is abtained due to a
low pressure region behind the leading bubble, which is
evidenced by the nowmlinear behaviour of the top
position history of the following bubble in Figure 8. As
time progresses, the two bubbles start to touch, as may
be seen in Figure 6c, leaving a mushroom-like structure,
The two bubbles travel as a single bubble, then a further
fragmentation occurs and a larger spherical cap is
obtained, as may be seen in Figure 6d. A detailed study
of the motion of such a single bubble in a viscous liquid,
such as the formation of a toroidal bubble, can be found
in Chen et al. [1996].

Figure 7: Experimentai resuit of the coalescence of two
air bubbles in glycerin liquid by Narayanan [1974]
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Figure 8: Top positions of leading and following
bubbles as a function of time
The details of the coalescence of the two bubbles are
shown in Figure 9 for velocity field and three contour
lines of function F: 0.1, 0.5 and 0.9. It can be seen that
the liquid circulation arcund the bubble produces a jet to
push the lower surface of both leading and following



bubbles and the deformations of the bubbles occur
(Figure 9a). Due to the effect of the velocity field
around the leading bubble, the following bubble is
stretched and a spherical cap-shaped leading bubble is
observed (Figure 9b), which are similar to the
experimental results in Figure 8. After the coalescence
occurs, the lower surface of the merged bubble is
accelerated by the liquid jet and a larger spherical cap is
obtained (Figures 9¢,d). The contour lines of F in Figure
9 have shown an accurate representation of the bubbles
with minimum numerical diffusion.

Figure 9: Velocity lield and three contours of F of the
values of 0.1, 0.5 and 0.9 for the simulation jn Figure 6

5. CONCLUSION

A robust numerical model for a two-phase fluid system
with a high density ratio has been presented. The model
accounts for surface tension and adopts high-order
convection schemes and a semi-implicit technique. The
modified VOF method has shown to have the capability
to capture a complex surface with a reasonable accuracy
and its implementation for three-dimensional flows is
straightforward. The coalescence of two gas bubbles ina
highly viscous liguid has been simulated. It has been
found that complex deformation and fragmentation of
interfaces can be well predicted by the present model
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and a reasonable agreement between numericai
simulation and experimental results has been achieved.
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